MultiLevel Local Time-Stepping Methods of Runge-Kutta-type for Wave Equations
نویسندگان
چکیده
Local mesh refinement significantly influences the performance of explicit timestepping methods for numerical wave propagation. Local time-stepping (LTS) methods improve the efficiency by using smaller time-steps precisely where the smallest mesh elements are located, thus permitting a larger time-step in the coarser regions of the mesh without violating the stability condition. However, when the mesh contains nested patches of refinement, any local time-step will be unnecessarily small in some regions. To allow for an appropriate time-step at each level of mesh refinement, multi-level local time-stepping (MLTS) methods have been proposed. Starting from the Runge–Kutta-based LTS methods derived by Grote et al. [17], we propose explicit MLTS methods of arbitrarily high accuracy. Numerical experiments with finite difference and continuous finite element spatial discretizations illustrate the usefulness of the novel MLTS methods and show that they retain the high accuracy and stability of the underlying Runge–Kutta methods.
منابع مشابه
Generalized convolution quadrature based on Runge-Kutta methods
Convolution equations for time and space-time problems have many important applications, e.g., for the modelling of wave or heat propagation via ordinary and partial differential equations as well as for the corresponding integral equation formulations. For their discretization, the convolution quadrature (CQ) has been developed since the late 1980’s and is now one of the most popular method in...
متن کاملAIAA 1981–1259 Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes
A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to determine the steady transonic flow past an airfoil using an O mesh. Convergence to a steady state is ...
متن کاملRunge-Kutta-Based Explicit Local Time-Stepping Methods for Wave Propagation
Locally refined meshes severely impede the efficiency of explicit Runge-Kutta (RK) methods for the simulation of time-dependent wave phenomena. By taking smaller time-steps precisely where the smallest elements are located, local time-stepping (LTS) methods overcome the bottleneck caused by the stringent stability constraint of but a few small elements in the mesh. Starting from classical or lo...
متن کاملMultirate Numerical Integration for Ordinary Differential Equations
Subject headings: Multirate time stepping / Local time stepping / Ordinary differential equations / Stiff differential equations / Asymptotic stability / High-order Rosenbrock methods / Partitioned Runge-Kutta methods / Mono-tonicity / TVD / Stability / Convergence. Het onderzoek dat tot dit proefschrift heeft geleid werd mede mogelijk gemaakt door een Peter Paul Peterichbeurs –verstrekt door d...
متن کاملPseudo-time stepping methods for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations
The space-time discontinuous Galerkin discretization of the compressible NavierStokes equations results in a non-linear system of algebraic equations, which we solve with a local pseudo-time stepping method. Explicit Runge-Kutta methods developed for the Euler equations are unsuitable for this purpose as a severe stability constraint linked to the viscous part of the equations must be satisfied...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 39 شماره
صفحات -
تاریخ انتشار 2017